
Chapter 1: Transmission Lines 
 
In this chapter we shall first recapitulate some of the topics learned in the 
framework of the course "Waves and Distributed Systems'' and then we shall 

extend the analysis to topics that are of 
importance to microwave devices. But first a 
few examples: 
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1.1 Simple Model 
First we shall examine the propagation of an electromagnetic 
wave between two parallel plates located at a distance a  one 
of the other as illustrated in the figure. The principal 
assumptions of this simple model are as follows:  
1.  No variation in the x  direction i.e. = 0x .  
2.  Steady state e.g.  exp j t .  
3.  The distance between the two plates (a ) is very small so that even if there is any 
(field) variation in the y  direction, it is negligible on the scale of the wavelength ( )a   

 0.
y z y
  


  
      (1.1.1) 

4. The constitutive relations of the vacuum: 
     0 0= , = 

   
D E B H  where 7

0 = 4 10    [Henry/meter] and  
     12

0 = 8.85 10   [Farad/Meter].  
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Based on the assumptions above, ME may be simplified.  
(a) Gauss' law = 0 = 0 = .z z zE E E const  

 
  we 

conclude that zE  is uniform between the two plates. 
Imposing next the boundary conditions on the two plates  

 ( = 0) = 0 ( = ) = 0z zE y E y a     (1.1.2) 
                which means that the longitudinal electric field vanishes ( 0)zE .  

(b)  In a similar way the magnetic induction satisfies = 0
 

B  and it may be shown     
 that the longitudinal component of the magnetic induction vanishes ( = 0)zB .  

(c)  Faraday's equation reads =  
 
E j B  thus explicitly  

          
1 1 1 1 : =
0 0 = 1 : =

0 1 : 0 = 0

x y z x z y x

z y z x y

x y z

E j B
j B E j B

E E


 

 
    


    (1.1.3) 

There is no variation in the y  direction therefore since = 0xE  for both = 0y  
and =y a , as in the case of zE , we have 0xE  therefore = 0yB  thus  

 = .y o xE j H
z




    (1.1.4) 
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(d) Ampere's law reads = 
  

H j D , or explicitly taking 
advantage of the vanishing components we get  

 

1 : 0 = 01 1 1
0 0 = 1 : =

0 0 1 : 0 = 0

xx y z

z y z x y

x z

j D H j D
H

   





 (1.1.5) 

            hence  

 = .x o yH j E
z




    (1.1.6) 

From these two equations [(1.1.4) and (1.1.6)] it can be readily seen that we obtain the 
wave-equation for each one of the components:  

 
2 2

2 2

=
 = 0

=

x o y

y

y o x

H j E
z E

z cE j H
z






 
        
 

    (1.1.7) 

 which has a solution of the form  

 = exp expyE A j z B j z
c c
        

   
    (1.1.8) 
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 It is convenient at this point to introduce the notation in terms of 
voltage and current. The voltage can be defined since = 0


E d ; it 

reads  
 ( ) = ( ) . yV z E z a  (1.1.9) 

 In order to define the current we recall that based on the boundary conditions we have 
1 2( ) = 
  n H H K  where 


K  is the surface current. Consequently, denoting by w  the 

height of the metallic plates, the local current is = zI K w  or  
 ( ) = ( ) .xI z H z w     (1.1.10) 

Based on these two equations [(1.1.9)–(1.1.10)] it is possible to write  

y o x o o

x o y o o

V I aE j H j V j I
z z a w z w

I V wH j E j I j V
z z w a z a

   

   

                   
                         

   (1.1.11) 

 The right hand side in both lines of (1.1.11) represent the so-called transmission line 
equation also known as telegraph equations.  
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 

 

( )

( )

d V z j I z
dz
d

L

I z j V z
z

C
d





 

 
  (1.1.12) 

C  being the capacitance per unit length whereas L  is the inductance per unit length;  

ando o
a wL C
w a

    . As expected, these two equations lead also to the wave equation   

 

2
2

2
= ( ) ( ) = 0

= ( )

dV dj LI z V zdz dz
dI j CV z LCdz 

 

 

       

 






    (1.1.13) 

The general solution is ( ) =   j z j zV z Ae Be  and correspondingly, the expression for 
the current is given by  

 1( ) = =dV j z j zI z Ae Be
j L dz L

  
 
    

    (1.1.14) 

 defining the characteristic impedance 1 = = 
 


c

LCZ
L L

 or ,c
LZ
C

  we get   
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 1( ) = .
c

j z j zI z Ae Be
Z

     
    (1.1.15) 

In the specific case under consideration  

 = = , = = .
o

c o

o

a
awZ LCw w c

a

   


    (1.1.16) 

 
1.2  Coaxial Transmission Line 

 
 
As indicated in the previous case, two parameters are to 
be determined: the capacitance per unit length ( )C  and 
the inductance per unit length ( )L . According to 
(1.1.11) these two parameters can be determined in 
static conditions. We determine next the  capacitance 
per unit length of a coaxial structure. For this purpose 
it is assumed that on the inner wire a voltage oV  is 
applied, whereas the outer cylinder is grounded. 

2Rint

2Rext
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Consequently, the potential is given by  

 ln( / )( ) = .
ln( / )

 ext
o

int ext

r Rr V
R R

 (1.2.1) 

 and the corresponding electric field associated with this potential is  

 1 1= = .
ln( / )


 
r o

int ext

E V
r r R R

 (1.2.2) 

 The charge per unit surface at = extr R  is calculated based on 1 2( ) =  
 

sn D D  and it is 
given by  

 
 

0
0

1= .
ln /

 s
ext ext int

V
R R R

     (1.2.3) 

 Based on this result, the charge per unit length ( ) z  may be expressed as  
  

 
 0

21= 2 = 2 = .
ln /

ln

o o o
s ext ext

z ext ext intext

int

V VQ R R
R R RR

R

    
  

 
 

                 (1.2.4) 

 Consequently, the capacitance per unit length is given by  
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 2/ = .
ln( / )

oz

o ext int

QC
V R R


  (1.2.5) 

 
 
In a similar way, we shall calculate the  inductance per unit length. Assuming that 

the inner wire carries a current I , based on Ampere law the azimuthal magnetic field is  

 ( ) = .
2 

oIH r
r

 (1.2.6) 

With this expression for the magnetic field, we can calculate the magnetic flux. It is given 
by  

  = ( ) = ln .
2

Rext ext
o z o zRint int

RIdrH r
R 


      (1.2.7) 

 The inductance per unit length  z  is  

              / = ln .
2

o extz

int

RL
I R




  
  

 
    (1.2.8) 

  
 
 

o

 z

I

2Rint

2Rext
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To summarize the parameters of a coaxial transmission line  

 

1= ln
2

ext
c o

int

RLZ
C R

c






 
  

 



    (1.2.9) 

Exercise 1.1: Determine cZ  and   for a coaxial line filled with a material ( , r r )? 

2Rint

2Rext
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1.3  Low Loss System 
 

Based on Ampere's law we obtained  

 = ( ) = ( ),   
  

o
dH j E I z j CV z
dz

 

   (1.3.1) 
where we assumed a line without dielectric ( r ) and Ohm ( )  loss. In the case of 
dielectric loss we have  

 =   r j     (1.3.2) 
 or in our case  

 .j C j C G Y        (1.3.3) 
 In a similar way based on Faraday's law  

 = ( ) = ( )o r
dE j H V z j LI z
dz

     
  

    (1.3.4) 

 and the magnetic losses  
 =   r r rj  

allows us to extend the definition according to  
    j L j L R Z     (1.3.5) 

 hence the equations  
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( ) = ( )

( ) = ( )

d I z YV z
dz
d V z ZI z
dz




 (1.3.6) 

may be conceived as a generalization of the transmission line equations in the presence of 
loss.  The characteristic impedance for small loss line is  

 = 1
2 2 

       
c

Z L G RZ j
Y C C L

    (1.3.7) 

 and the wave number, assuming a solution of the form  exp z , 

 

2 2

2 2 2 2 2

=

2 2

1
4 8 8

o

o

j
GZR

Z

RG G RLC
LC C L

  



 
  





 
   

 





    (1.3.8) 

 
Exercise 1.2: Prove the relations in Eq. (1.3.8).  
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1.4  Generalization of the Transmission Line Equations 
 

 
 

The fundamental assumptions of the analysis are: 
(i) TEM, (ii) the wave propagates in the z  direction, (iii) we distinguish between 

longitudinal ( z ) and transverse ( ) components = 1


  


 
zz
. 

From Faraday law, =   
  

o rE j H , we obtain  

 

1 ( )1 1 1
= 1

0 1

 

   

  







x z yx y z

x y z y z x

x y z x y y x

E

E
E E E E

    (1.4.1) 

 thus  
1 : =

1 : 1 =
1 : =
1 : = 0 1 : = 0.

 
 

 


 

 

  
   

   

  

  

x z y o r x
z o r

y z x o r y

z x y y x z

E j H E j H
E j H z

E E E
    (1.4.2) 
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 In a similar way, from Ampere's law we have  

1 : 1 =
=

1 : = 0.

 
 


 

 

 
   

  

  
  

  
z o r

o r

z

H j E
H j E z

H
 (1.4.3) 

 From the two curl equations  
2

2

= 0 = ( ) ( , ) = 0

= 0 = ( ) ( , ) = 0,

 

 
    

    

     

     

  

  
E E g z x y

H H h z x y
  (1.4.4) 

 we conclude that the transverse variations of the transverse field components are 
determined by 2D Laplace equation justifying the use of DC quantities adopted above 
(capacitance and inductance per unit length). From the other two equations we get the 
wave equation  

2

2

1

1 1 1 = [ ],

z o r

z z o r z o r o r

E Hj
z z z

E Hj j j E
z z

 

     

 

 


   
      

    
            

 

    
   (1.4.5) 

 or explicitly  
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2 2

2 2 = 0.r r E
z c

   

 
  


 (1.4.6) 

 The last equation determines the dynamics of ( )g z  [see (1.4.4)] and 

the solution has the form ( ) =  j zg z e  where = ( / )   r rc . Note that  

 
1 1

1 1

o r
z o r z

o r

o r
z o r z

o r

E j H E H
z

H j E H E
z

  
 

  
 


  


  


     



     



   

   
    (1.4.7) 
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As in the previous two cases we shall see next how 
the electric parameters can be calculated in the 
general case and for the sake of simplicity we shall 
assume that the medium has uniform transverse and 
longitudinal properties. The electric field in the entire space is given by 

= ( )  
 

 j zE e  whereas the magnetic field is  

 = ( 1 ) .  
  

 


o r
z

o r

j zH e     (1.4.8) 

 Note that associated to this electric field, one can define the voltage  
 2 2 2

1 1 1
= = =       

 
 

s s s

o s s s
V E d d d     (1.4.9) 

 such that ( ) = 
o

j zV z V e . On the two (ideal) conductors the electric field generates a 
surface charge given by  

= ,   


s o rn E                                     (1.4.10) 
 therefore the charge per unit length is  

= = ( ).   
  


 s o r

z

Q dl dl n E          (1.4.11) 

 Since by virtue of linearity of Maxwell's equations 

1

2

V

0Vxy
z

0V
s

s
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the charge per unit length is  proportional to the applied 

voltage 0=
 z

Q CV  we get  

 
0

1= ( ).o rC dl n E
V

  
     (1.4.12) 

 In a similar way, the magnetic field generates on the metallic electrode (wire) a surface 
current given by  

 = .
 

sJ n H     (1.4.13) 

 Since it was shown that = 1 
  

 
o r

z
o r

H E  we conclude that  

 = [1 ] ( )1o r o r
s z z

o r o r

J n H n E n E   
          

           (1.4.14) 

 hence the total current is  

  0 1 o r
s z

o r

I J dl dl n E 
      

       (1.4.15) 

 At this point rather than calculating the inductance per unit length we combine the 
previous result for the charge per unit length and (1.4.15) the result being  

1

2

V

0Vxy
z

0V
s

s
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 = = .
/

o r

o ro

z r ro r

dl n E
I c

Q dl n E

 
 

  







 











 (1.4.16) 

However, having established this relation between the current and the charge per unit 
length we may use again the linearity of Maxwell's equations and express 0/ = zQ CV . 
Substituting in Eq. (1.4.16) we get  

 0 =
 o r r

I c
CV

    (1.4.17) 

but by definition  

 0

0

= ,c
V Z
I

    (1.4.18) 

which finally implies that  

 1 = .
 c r r

c
CZ

 

 This result leads to a very important conclusion namely, in a transmission line of 
uniform electromagnetic properties it is sufficient to calculate the capacitance per 
unit length. Bearing in mind that = /cZ L C  we find that once C  is established,  

1

2

V

0Vxy
z

0V
s

s
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2= . r rL
Cc

  (1.4.19) 

 It is important to re-emphasize that this relation is valid only if the electromagnetic 
properties ( , ) r r  are uniform over the cross-section. 
 
Exercise 1.3:  Calculate the capacitance per unit length of two wires of radius R  which 
are at a distance > 2d R  apart. 
 
Another quantity that warrants consideration is the average power  

     

 

* *

* *

1 1= R 1 = R 1 1
2 2

1 2 1= R
2 4

2= = [ ].

o r
z z z

o r

o r o r
o r

o r o r o r

e e m
o o r r r r

P e dxdy E H e dxdy E E

e dxdy E E dxdy E E

cW W W

 
 

     
     

     

   

   

      

     



 

 

     

   
 (1.4.20) 

  
 
 

1

2

V

0Vxy
z

0V
s

s
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Exercise 1.4: In the last expression we used the fact that =e mW W  -- prove it. 

Exercise 1.5:  Show that the power can be expressed as 2 *1 1= | | =
2 2c o o oP Z I V I . 

Finally, we may define the energy velocity as the average power propagating along the 
transmission line over the total average energy per unit length  

 en = = .
 e m r r

P cV
W W

 

Exercise 1.6:  Show that the material is not frequency dependent, this quantity equals 
exactly the group velocity. What if not? Namely r ( )  . 
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1.5 Non-Homogeneous Transmission Line 

 
There are cases when either the electromagnetic properties or the 
geometry vary along the structure. In these cases the impedance per unit 
length ( )Z  and admittance per unit length ( )Y  are z -dependent i.e.  

 

( ) ( ) ( )

( ) ( ) ( ).

dV z Z z I z
dz

dI z Y z V z
dz

 

 
    (1.5.1) 

As a result, the voltage or current satisfy an equation that to some extent differs from the 
regular wave equation  

 
 

2

2

( ) ( )( ) ( )

ln ( ) ( ) ( ) ( )

d V dZ z dI zI z Z z
dz dz dz

d dVZ z Z z Y z V z
dz dz

  

   
 

    (1.5.2) 

A solution of a general character is possible only using 
numerical methods. However, an analytic solution is 
possible if we assume an "exponential'' behavior of the 
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form  

 
 

   
( ) exp

exp
o

o

Z z j L qz

Y z j C qz







 
 (1.5.3) 

 Substituting these expressions in Eq. (1.5.2) we get  

 
2

2
2

( ) = 0  o o
d V z dVq L C V

dz dz
    (1.5.4) 

 therefore assuming a solution of the form 1( ) =  z
oV z V e  we conclude that  

 2 2 2 2
1

1 1= 4 4 .
2 2o o o oq q L C q q L C              

    (1.5.5) 

In a similar way, the equation for the current is given by  

 
2

2 ln[ ( )] ( ) = 0. 
d I dI d Y z YZI z
dz dz dz

    (1.5.6) 

Assuming a solution of the form 2=  z
oI I e  we obtain  

 2 2 2 2
2

1 1= 4 4 .
2 2o o o oq q L C q q L C         
   

    (1.5.7) 

It is convenient to define  

 
2

2

0 0

,
4c

q
L C

      (1.5.8) 
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which sets a "cut-off'' in the sense that for < c  both 1  and 1  are real. 
The second important result is that the impedance along the transmission 
line  

 
1

0

2
0

( ) = = (0)
( )

z

cz

V eV z qzZ e
I z I e





   

  (1.5.9) 
 is  frequency independent. 
 
Exercise 1.7: Plot the average power along such a transmission line as well as the 
average electric and magnetic energies. What is the energy velocity? 
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1.6  Coupled Transmission Lines 
 

 
   Microwave or high frequency circuits consist 

typically of many elements connected usually with wires that 
may be conceived as transmission lines. The proximity of 
one line to another may lead to coupling phenomena. Our purpose in this section is to 
formulate the telegraph equations in the presence of coupling. With this purpose in mind 
let us assume N  transmission lines each one of which is denoted by an index 

(= 1,2 )n N  -- as illustrated in the figure above. Ignoring loss in the system we may 
conclude that the relation between the charge per unit length of each "wire'' is related to 
the voltages by  

 
1

=
N

n n
nz

Q C V


      (1.6.1) 

 , nC  being the capacitance matrix per unit length. In a similar way, it is possible to 
establish the inductance matrix per unit length relating the voltage on wire   with all the 
currents  

 
=1

= .



 

N

n n
nz

L I  (1.6.2) 
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Having these two equations [(1.6.1)–(1.6.2)] in mind, we may naturally extend the 
telegraph equations to read  

 
=1 =1

( ) = ( ) ( ) = ( ).
N N

n n n n
n n

d dV z j L I z I z j C V z
dz dz        (1.6.3) 

Subsequently we discuss in more detail phenomena linked to this coupling process 
however, at this point we wish to emphasize that the number of wave-numbers 2( )  
corresponds to the number of ports. This is evident since  

 0 0( ) = ( ) =     j z j zV z V e I z I e ,    (1.6.4) 
 enabling to simplify (1.6.3) to read  

 0 0 0 0= =
= =V LI I CV   

   
    (1.6.5) 

 thus the wavenumber is the non-trivial solution of  
 2 2 2 2

0 0= == = = =
[ ] = 0 or [ ] = 0LC V C L I      

 
    (1.6.6) 

wherein 
=
  is the unity matrix. Clearly the normalized wave number  22 /c    are 

the eigen-values of the matrix 
= =
LC  (

==
= C L  since both matrices are symmetric) and if the 

dimension of 
=
C  and 

=
L  is N  then, the number of the eigen wavenumbers is also N . 

 



 26

1.7  Microstrip  
 
 

In this section we shall discuss in some detail 
some of the properties of a microstrip which is an 
essential component in any micro-electronic as well 
as microwave circuit. The microstrip consists of a 
thin and narrow metallic strip located on a thicker 
dielectric layer. On the other side of the latter, there 
is a ground metal; the side walls have been 
introduced in order to simplify the analysis and the 
width w  is large enough such that it does not affect the physical processes in the vicinity 
of the strip. We shall examine a simplified model of this system and for this purpose we 
make the following  assumptions:    (i)  The width of the device is much larger than the 
height ( )w h  and the width ( )w  of the strip.  
(ii)  The charge on the strip is distributed uniformly.  

 
 Our goal is to calculate the two parameters of the transmission line:  capacitance 

and inductance per unit length. With this purpose in mind we shall start with 
evaluation of the capacitance therefore let us assume a general charge distribution on the 

r
x

y
h r



w
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strip  

( ) | |<
2 2( ) =

0 | |>
2 2

s

wx x
x

wx




 
  


                               (1.7.1) 

 With the exception of =y h  the potential is given by  

 
=1

=1

sin sinh 0

( , ) =
( )

sin .

n
n

n
n

nx nyA y h
w w

x y n y hnx wB e y h
w

 

 






             
       

 




    (1.7.2) 

 The continuity of the potential at =y h  implies  

sinh

( , = ) = sin sinh = s n

=

i

.

n n
n

n

n

n

x nh nxx y h A n B
w w w

nhA B
w





      
   

 
 
 

 
     



 
    (1.7.3) 
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The electric induction yD  is discontinuous at this plane. In each 
one of the two regions the field is given by  

( , < ) sin cosh

( , > ) sin exp ( ) .

y o r n
n

y o n
n

n nx nyD x y h A
w w w

n nx nD x y h B y h
w w w

   

  

            
     

                 




   (1.7.4) 

With these expressions, we can write the boundary conditions i.e., 1 2( ) =  
 

sn D D  in 
the following form  

( ) | |<
2 2sin cosh =

0 | |> .
2 2


   

                        


o n r n
n

wx xn nx nhB A
ww w w x

  (1.7.5) 

Using the orthogonality of the sin  function we obtain [for this reason the two side walls 
were introduced]  

1 2 2cosh = ( )sin .

2

n r n
o

w
nh nxB A dx xww n w

  
 

 
                (1.7.6) 
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x

y
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The next step is to substitute (1.7.3) into the last expression. The 
result is  

1 2 2sinh cosh = ( )sin .

2

   
 

 
                     n r

o

w
nh nh nxA dx xww w n w

  (1.7.7) 

Consequently, subject to the assumption that  x  is known, the potential is known in the 
entire space and specifically  at =y h  is given by  

1 1 2 2( , = ) = sin ( )sin .
1 ctanh 2

n o
r

w
nx nxx y h dx xwnhw n w

w

  
  

 
              

 

   (1.7.8) 

In principle, this is an integral equation which can be solved numerically since the 
potential on the strip is constant and it equals 0V ;  many source solution. 

At this point we shall employ our second assumption namely that the charge is 
uniform across the strip and determine an approximate solution. The first step is to 
average over the strip region, | / 2 | / 2x w   . The left hand side is by definition constant 
thus  
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1 2= ( , = )

2

(1/ )(2/ ) 1 2 2= sin ( )sin .
1 ctanh 2 2

o

o

n
r

w

V dx x y hw

w w
n nx nxdx dx xw wnh w w
w



   


 

 

      
                               



  

     
 (1.7.9) 
Explicitly our assumption that the charge is uniformly distributed, implies /   zQ , 
therefore  

2

0

1 2 1 1 2= sin
1 ctanh 2

o
nz

r

w
Q nxV dxwnhn w

w


  

  
  

             

   

and finally the capacitance per unit length is  
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22

/2/=
1/ sincsin 2 21 ctanh

oz

o

n
r

QC
n n nV

nh w
w

 
 




   

          
 


     (1.7.10) 

 
With this expression we can, in principle calculate all the parameters of the 

microstrip. For evaluation of the inductance per unit length we use the fact that the 
dielectric material cannot have any impact on the DC inductance. Moreover, we know 
that in the absence of the dielectric ( = 1 r ), the propagation number is / c  and the 
characteristic impedance satisfies  

 1 1 ( = 1)= 1 = .
( = 1) ( = 1)


 

r
c

r r

LZ
C c C

    (1.7.11) 

Since the DC magnetic field is totally independent of the dielectric coefficient of the 
medium (electric property), we deduce from the expression of above that  

 2

1( = 1) = ,
( = 1)




 r
r

L
c C

    (1.7.12) 

or explicitly  

r
x

y
h r



w



 32

2

=0

2 1= exp (2 1) sinh (2 1) sinc (2 1) .
2 1 2o

h hL
w w w

     
 

                        
 (1.7.13) 

With the last expression and (1.7.10) we can calculate the characteristic impedance of the 
microstrip  

1/2 1/22 2

=0 =0

sinh( )sinc ( ) sinc ( )2= = ,
2 1 (2 1)[1 ctanh( )]c o

r

he hLZ
C h


  

  


   

              
  (1.7.14) 

 where (2 1) /   h h w  and (2 1)
2
 

  
w

. The next parameter that remains to be 

determined is the phase velocity. Since L  and C  are known, we know that =  LC  
implying that  

 
 
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p 2

=0

sinc ( ) 1
2 1 1 ctanh( )1= = .
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 
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 
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 


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
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

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
    (1.7.15) 

 
 
 

r
x

y
h r



w



 33

Contrary to cases encountered so far the dielectric material fills only part of the entire 
volume. As a result, only part of the electromagnetic field experiences the dielectric. It is 
therefore natural to determine the effective dielectric coefficient experienced by the 
field. This quantity may be defined in several ways. One possibility is to use the fact that 

when the dielectric fills the entire space we have the phase velocity in p =
h

r

cV  it 

becomes natural to define the  effective dielectric coefficient as 
2

e 2
p

 ff
h

c
V

 thus  

 
 

2

=0
e 2

=0

sinc ( ) exp sinh( )
2 1= .
sinc ( ) 1

2 1 1 ctanh( )

ff

r

h h

h


 





 



 










 




    (1.7.16) 

 
The following figures illustrate the dependence of the various parameters on the 

geometric parameters.  
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                 (a)                                          (b)                                                (c) 

 
(a) Characteristic impedance vs.  ;  = 2h mm, = 20w mm, = 10 r  and 100  . 
(b) Phase velocity vs.   ; = 2h mm , = 20w mm, = 10 r  and 100  . 
(c) Effective dielectric coefficient vs.  ; = 2h mm , = 20w mm, = 10 r  and 100  .  
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                  (a)                                          (b)                                                  (c) 
 

(a) Characteristic impedance vs.  the height h ; = 2 mm, = 20w mm, = 10 r , 100  . 
(b) Phase velocity vs. the height h ; = 2 mm , = 20w mm, = 10 r ,  100  . 
(c) Effective dielectric coefficient vs. the height h ; = 2 mm, = 20w mm, = 10 r , 

100  .  
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Finally the figure below shows several alternative configurations



 37

 
Exercise 1.8: Determine the effective dielectric coefficient relying on energy 
confinement. 
Exercise 1.9:  What fraction of the energy is confined in the dielectric and how the  
various parameters affect this fraction? 
Exercise 1.10: Examine the effect of the dielectric coefficient on ,c effZ  and phV . 
Compare with the case where the dielectric fills the entire space. (For solution see 
Appendix 11.1) 
Exercise 1.11: Show that if ,w h   the various quantities are independent of w . 
Explain!! (For solution see Appendix 11.2) 
Exercise 1.12:  Analyze the effect of dielectric and permeability loss on a micro-strip. 
Exercise 1.13: Calculate the ohmic loss. Analyze the effect of the strip and ground 
separately. 
Exercise 1.14: Determine the effect of the edges on the electric parameters ( , )L C .  



 38

1.8  Stripline 
 
Being open on the top side, the microstrip has limited ability to confine the 

electromagnetic field. For this reason we shall examine now the stripline which has a 
metallic surface on its top. The basic configuration of a stripline is illustrated below 

The model we shall utilize first replaces the central strip with a wire as illustrated below  
and as in Section 1.7 our goal is to calculate the parameters of the line. 
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For evaluation of the capacitance per unit length it is first assumed that the charge density 
is given by  

 ( , ) = ( ) ( ),   
 z

Qx y x y h     (1.8.1) 

 and we need to solve the Poisson equation subject to trivial boundary conditions on the 
two electrodes. Thus  

 

2 =

( = 0) = 0 ( , ) = ( )sin .
( = ) = 0

t
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n
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nyy x y x
d

y d


 
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

  
    
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


     (1.8.2) 

 Substituting the expression in the right hand side in the Poisson equation we have  
22

2 ( ) ( ) sin = ( ) ( )    
 

               
 n n

n o r z

d n ny Qx x x y h
dx d d

   (1.8.3) 

 and the orthogonality of the trigonometric function we obtain  
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22

2

2( ) = ( ) sin = ( ),   
 

              
n n

o r z

d n Q nhx x Q x
dx d d d

    (1.8.4) 

 where  

 2 sin .
 

     
n

o r z

Q nhQ
d d

 

The solution of (1.8.4) is given by  

 
exp > 0
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exp < 0
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

     

    (1.8.5) 

 and since the potential has to be continuous at = 0x  then  
 = ,n nA B     (1.8.6) 

 integration of (1.8.4) determines the discontinuity:  
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    (1.8.7) 

 From (1.8.6) and (1.8.7) we find  
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 = = = sinc .
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    (1.8.8) 

 This result permits us to write the solution of the potential in the entire space as  
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    (1.8.9) 

 
At this stage we can return to the initial configuration and assume that the central 

strip is a superposition of charges iQ  located at ix  and since the system is linear, we 
apply the superposition principle thus  

| |/( , ) = sinc sin exp .i
i

n io r z

x xh d nh nyx y Q n
d d d

  
 

                
    (1.8.10) 

 In the case of a continuous distribution we should replace  
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| |1= ( )

i

i
i

n nx x x x
d dQ e dx Q x e

     
 

      (1.8.11) 

 and consequently  
/ 1( , ) = sinc sin ( )exp | | ,

no r z

h d nh ny nx y dx Q x x x
d d d

  
 

                   
   (1.8.12) 

 which again leads us to an integral equation; note that the surface changes density as 
( ) = ( ) /s zx Q x  . As in the microstrip case, we shall assume uniform distribution 

therefore  
/2/( , ) = sinc sin exp | | ./2

o

no r z

Qh d nh ny nx y dx x x
d d d

  
  

                  
   (1.8.13) 

 The potential is constant on the strip  
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 1
2

=1

/21= ( , = )/2

/2 /2( / ) 1 1= exp | |sin /2 /2

o

o

no r z

V dx x y h

h d Q nh nh ndx dx x x
d d d



  
 





 




                     



  
 (1.8.14) 

 and the two integrals may be simplified to read  
1/ 2 / 21 1 exp = 1 exp sinhc/2 /2 2 2 2

n n n ndx dx x x
d d d d
   

 

                                   
    

     (1.8.15) 
 such that  

2

=1

2( / )
= sinc 1 exp sinhc .

2 2

o

o
no r z

hh d Q
nh n nV
d d d

  
 


 
                          

   (1.8.16) 

 The last result enables us to write the following expression for the capacitance per unit 
length  

 
1

2
2

/ 1= = sinc 1 exp sinhc( )
2

o z
o r n n

no

Q d nhC
V h d

   


                  
   (1.8.17) 
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 whereas = / 2  n n d , thus with it the characteristic impedance reads  

  
2

21 2= = sinc 1 exp sinhc( ) .c o n n
nph r

h nhZ
CV d d

  


         
   (1.8.18) 

The two frames show the impedance dependence on the width and height of the strip 
10    
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Exercise 1.15:  Determine the inductivity per unit length and analyse the dependence of 
the various characteristics on the geometric parameters. (For solution see Appendix 11.3) 
Exercise 1.16:  Compare the dependence of the various characteristics of the stripline 
and microstrip as a function of the geometric parameters. 
Exercise 1.17:  Compare micro-strip and strip-line from the perspective of sensitivity to 
the dielectric coefficient. (For solution see Appendix 11.4) 
Exercise 1.18: Determine the error associated with the assumption that the charge is 
uniform across the strip. 
Exercise 1.19: Analyze the effect of a strip of finite thickness. Remember that 
throughout this calculation the strip was assumed to have a negligible thickness. 
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1.9  Resonator Based on Transmission Line 
  

1.9.1  Short Recapitulation 
Resonant circuits are of great importance for oscillator circuits, tuned amplifiers, 

frequency filter networks, wavemeters for measuring frequency. Electric resonant circuits 
have many features in common, and it will be worthwhile to review some of these by 
using a conventional lumped-parameter RLC  parallel network as an example, the Figure  
illustrates a typical low-frequency resonant circuit. The resistance R  is usually only an 
equivalent resistance that accounts for the power loss in the inductor L  and capacitor C  
as well as the power extracted from the resonant system by some external load coupled to 
the resonant circuit. One possible definition of 
resonance relies on the fact that at resonance the 
input impedance is pure real and equal to R  
implying  

 *

2 ( )= .
/ 2

l m e
in

P j W WZ
II
      (1.9.1) 

 Although this equation is valid for a one-port 
circuit, resonance always occurs when =m eW W , if we define resonance to be that 
condition which corresponds to a pure resistive input impedance or explicitly 

0 = 1/ LC ; note that these are the lumped capacitance ( )C  and inductance ( )L .  

R L CinZ V

I
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An important parameter specifying the frequency selectivity, and performance in general, 
of a resonant circuit is the quality factor, or Q . A very general definition of Q  that is 
applicable to all resonant ( = )e mW W  systems is  

 0 (time average energy stored in the system)= .
energy loss per second in the system

Q       (1.9.2) 

 hence,  
 0 0= = / .Q RC R L      (1.9.3) 

 In the vicinity of resonance, say 0=   , the input impedance can be expressed in a 
relatively simple form. We have  

 
2
0

2
0 0

= = .
2 1 2 ( / )


      in

RL RZ
L j R j Q

    (1.9.4) 

 A plot of inZ  as a function of 0/   is given below. 
When | |inZ  has fallen to 1/ 2  (half the power) of its 
maximum value, its phase is 45  if 0<   and -45   if 

0>   thus  

 
0

02 = 1 =
2Q

Q


 
         (1.9.5) 

R

inZ

90

90
0


BW

inZ

inZ

R707.0
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 The fractional bandwidth BW  between the 0.707 R  points is twice this value, hence  

 0 1= = .
2



Q
BW

               (1.9.6) 

 If the resistor R  in Fig. 8 represents the loss in the resonant circuit only, the Q  give by 
(1.9.3) is called the unloaded Q . If the resonant circuit is coupled to an external load that 
absorbs a certain amount of power, this loading effect can be represented by an additional 
resistor LR  in parallel with R . The total resistance is now less, and consequently the new 
Q  is also smaller. The Q , called the loaded Q  and denoted LQ , is  

 
0

/ ( )= .


L L
L

RR R RQ
L

    (1.9.7) 

The external Q , denoted eQ , is defined to be the Q  that would result if the resonant 
circuit were loss-free and only the loading by the external load was present. Thus  

 
0

=


L
e

RQ
L

    (1.9.8) 

 leading to  

 1 1 1= .
L eQ Q Q

    (1.9.9) 

 Another parameter of importance in connection with a resonant circuit is the decay factor 
 . This parameter measures the rate at which the oscillations would decay if the driving 
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source were removed. Significantly, with losses present, the energy stored in the resonant 
circuit will decay at a rate proportional to the average energy present at any time (since 

*lP VV  and *W VV , we have lP W ), so that  

 0
2= = exp 2dW tW W W

dt  
    
 

    (1.9.10) 

 where 0W  is the average energy present at = 0t . But the rate of decrease of W  must 
equal the power loss, so that  

 2= =


 l
dW W P
dt

 

and consequently,  

 0 0

0

1 = = = .
2 2 2

 
 

l lP P
W W Q

    (1.9.11) 

 Thus, the decay factor is  proportional to the Q . In place of (1.9.10) we now have  

 0
0= exp .W W t

Q
 

 
 

    (1.9.12) 
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1.9.2  Short-Circuited Line 

 By analogy to the previous section, consider a short-circuited line of length l , 
parameters , ,R L C  per unit length, as in Fig. 10. Let 0= / 2l  at 0=f f , that is, at 

0=  . For f  near 0f , say 0=  f f f , 0 0= 2 / , / = /l f l c         , since at 
0 , =  l . The input impedance is given by  

tanh tan= tanh( ) = .
1 tan tanh

  
 



in c c

l j lZ Z j l l Z
j l l

 (1.9.13) 

 But tanh l l  since we are assuming small losses, so that 
1 l . Also 0 0 0tan = tan( / ) = tan / /             l  

since 0/   is small. Hence  

 0

0 0

/=
1 /
     

    
   

     
in c c

l jZ Z Z l j
j l

 (1.9.14) 

 since the second term in the denominator is very small. Now 

= /cZ L C , 1= = ( / 2) /
2

 cRY R C L , and 0= =  l LCl ; so 

0/ =  l LC , and the expression for inZ  becomes  

 ,,cZ

l

inZ
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 1= = .
2 2

 
 

    
 

in
L l CZ R j l LC Rl jlL
C L

  (1.9.15) 

 It is of interest to compare (1.9.15) with a series 0 0 0R L C  circuit illustrated 
above. For this circuit  

  2
0 0 0 0= 1 1/ .inZ R j L L C    

If we let 2
0 0 0= 1 / L C , then   2 2 2

in 0 0 0= / .Z R j L      Now if  0 =     is small 
then   

 0 02 .inZ R jL       (1.9.16) 
 By comparison with (1.9.15), we see that in the vicinity of the frequency for which 
0= / 2l , the short-circuited line behaves as a series resonant circuit with resistance 

0 = / 2R Rl  and inductance 0 = / 2L Ll . We note that ,Rl Ll  are the total resistance and 
inductance of the line; so we might wonder why the factors 1/ 2 arise: recall that the 
current on the short-circuited line is half sinusoid, and hence the effective circuit 
parameters 0 0,R L  are only one-half of the total line quantities.The Q  of the short-
circuited line may be defined as for the circuit    

  0 0 0

0

= = = .
2

  


L LQ
R R

    (1.9.17) 

inZ

0R

0L

0C
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1.9.3  Open-Circuited Line 
By means of an analysis similar to that used earlier, it is readily verified that an open-
circuited transmission line is equivalent to a series resonant circuit in the vicinity of the 
frequency for which it is an odd multiple of a quarter wavelength long. The equivalent 
relations are  

 
  0

2
0 0 0 0 0 0

/ 2 / = / 2

/ 4, / 2, / 2, 1/
in cZ l j Z Rl j Ll

l R Rl L Ll L C

    

 

     
   


    (1.9.18) 

Comment: Note that formally from (1.9.13) in the lossless case i.e., = tan in cZ jZ l  we 
conclude that there are many (infinite) resonances 
since tan( ) l  vanishes for = l  but also for 

= l n , = 1,2,3n  corresponding to all the 
"series'' resonances. In case of "parallel'' resonances 
the condition tan  l  is satisfied for 

=
2
 l n , = 1,2,n . In practice, only the first 

resonance is used since beyond that the validity of 
the approximations leading to the equations are 
questionable. 

0R

0L

0C

cZ

l

inZ 
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1.10  Pulse Propagation 
  

1.10.1  Semi-Infinite Structure 
So far the discussion has focused on solution of problems in the frequency domain. 

In this section we shall discuss some time-domain features. Let us assume that at the 
input of a semi-infinite and lossless transmission line we know the voltage pulse 

0( = 0, ) = ( )V z t V t . In general in the absence of reflections  

 ( )( , ) = ( )      j t j zV z t d V e     (1.10.1) 
 and specifically  

 ( = 0, ) = ( )   j tV z t d V e     (1.10.2) 

 or explicitly, the voltage spectrum ( )V  is the Fourier transform of the input voltage   

 0
1 1( ) = ( = 0, ) = ( ) .

2 2
j t j tV dtV z t e dtV t e 

 
 

 

      (1.10.3) 

 Consequently, substituting in Eq.(1.10.1) we get   

 

1( )( , ) = ( = 0, )
2

1 ( ) ( )= ( = 0, )
2

j t j z j tV z t d e dt V z t e

j t t j zdt V z t d e

   


  


 

 

 

 

  

  

 

 
   (1.10.4) 
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 and in the case of a dispersionless line we have ( ) =    rc
 which leads to  

 ( , ) = ( = 0, ) = = 0, =r r
z zV z t dt V z t t t V z t t
c c

  




           
     (1.10.5) 

implying that the pulse shape is preserved as it propagates in the z -direction. If the 
phase velocity is frequency-dependent, then different frequencies propagate at different 
velocities and the shape of the pulse is not preserved. As a simple example let us assume 
that the transmission line is filled with gas  

 
2

2( ) = 1 .


 


 p     (1.10.6) 

 Since  

  2 21( , ) = = 0, exp ( )
2 p

zV z t dt V z t d j t t
c

   






            (1.10.7) 

 it is evident that sufficiently far away from the input, the low frequencies ( < ) p  have 
no contribution and the system acts as a high-pass filter. 

 
The dispersion process may be used to determine the frequency content of a signal. 

In order to envision the process let us assume that the spectrum of the signal at the input 
is given by  


