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Chapter 2:  Waveguides – Fundamentals 
 

 
2.1  General Formulation 

 
So far we have examined the propagation of electromagnetic waves in a structure 

consisting of two or more metallic surfaces. This type of structure supports a transverse 
electromagnetic (TEM) mode. However, if the electromagnetic characteristics of the 
structure are not uniform across the structure, the mode is not a pure TEM mode but it 
has a longitudinal field component.  
In this chapter we consider the propagation of an electromagnetic wave in a closed 
metallic structure which is infinite in one direction ( z ) and it has a rectangular (or 
cylindrical) cross-section as illustrated in Fig. 1. While the use of this type of waveguide 
is relatively sparse these days, we shall adopt it since it provides a very convenient 
mathematical foundation in the form of a set of trigonometric functions. This is an 
orthogonal set of functions which may be easily manipulated. The approach is valid 
whenever the transverse dimensions of the structure are comparable with the wavelength.  
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 Rectangular waveguide; a  and b  are the dimensions of the rectangular cross section. a  corresponding to 

the x  coordinate, b  to the y  coordinate.  
 

The first step in our analysis is to establish the basic assumptions of our approach: 
  

a) The electromagnetic characteristics of the medium:  0= rµ µ µ  and 0= rε ε ε . 
b) Steady state operation of the type ( )exp j tω . 
c) No sources in the pipe. 
d) Propagation in the z direction --  ( )zexp jk z− ;  zk  can be either real or imaginary or 

complex number. 
e) The conductivity ( )σ  of the metal is assumed to be arbitrary large (σ → ∞). 
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Subject to these assumptions Maxwell's Equations may be 
written in the following form  

 = =E j H H j Eωµ ωε∇× − ∇×
    

    (2.1.1) 
 Substituting one equation into the other we obtain the wave equation  

2 2

2 2
2 2

2 2
2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
v v

= 0 = 0

0
v v

E j H H j E
E E j j E H H j j H

E E E H H H

E H

E

ωµ ωε
ωµ ωε ωε ωµ

ω ω

ε µ

ω ω

∇× ∇× = − ∇× ∇× ∇× = ∇×
∇ ∇ ⋅ −∇ = − ∇ ∇ ⋅ −∇ = −

   ∇ ∇ ⋅ −∇ = ∇ ∇ ⋅ −∇ =   
   

∇ ⋅ ∇ ⋅

      ∇ + = ∇ +     
       

         

       

       

   



0H =




  (2.1.2) 

 where v = 1/ µε  is the phase-velocity of a plane wave in the medium. Specifically, we 
conclude that the z  components of the electromagnetic field satisfy  

 
2 2

2 2
2 2= 0, = 0

v vz zE Hω ω   
∇ + ∇ +   
   

    (2.1.3) 
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 and subject to assumption (d) we have  

 
2 2

2 2 2 2
2 2= 0 = 0.

v vz z z zk E k Hω ω
⊥ ⊥

   
∇ − + ∇ − +   
   

 

As a second step, it will be shown that assuming the longitudinal components of the 
electromagentic field are known, the transverse components are readily established. For 
this purpose we observe that Faraday's Law reads  

 z

1 1 1
= = .

x y z

x y

x y z

E j H jk j H
E E E

ωµ ωµ∇× − ⇒ ∂ ∂ − −
  

    (2.1.4) 

 
z z

z z

(i) 1 : = =
(ii) 1 : ( ) = =

(iii) 1 : = = .

x y z y x y x y

y x z x y x y x

z x y y x z x y y

z

zx

zE jk E j H jk E j H
E jk E j H jk E j H

E

E
E

E j E E j HH

ωµ ωµ
ωµ ωµ
ωµ ωµ

∂ + − + − ∂
− ∂ + − − + ∂

∂ − ∂ − ∂ − ∂ −





 

In a similar way, Ampere's law reads  

 z

1 1 1
= = ,

x y z

x y

x y z

H j E jk j E
H H H

ωε ωε∇× ⇒ ∂ ∂ −
   

    (2.1.5) 
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 or explicitly  
z

z z

(iv) 1 : = =
(v) 1 : ( ) = =

(vi) 1 : = = .

x y z y x x z y y

y x z x y y x x

z x y y x z x y y x

z

z

z

H jk H j E j E jk H
H jk H j E j E jk H

H H j E H H j

H
H

E

ωε ωε
ωε ωε
ωε ωε

∂ + − ∂
− ∂ + + − ∂

∂ − ∂ ∂ − ∂





 

From equations  (ii) and  (iv) we obtain  
z

2 2
z z z

z
z2 2

z

1 1
( /v)

( /v)

y x z y z
x y x z

x y y z
x x z y z

jkH E Hjk E j H E k k
j E jk H H jE k E H

k

ωε
ωµ ω ωε

ωε
ωµ

ω

 
= ∂ + ∂ − + = ∂  −  →− = ∂   = ∂ + ∂ −

 (2.1.6) 

 It is convenient at this point to define the transverse wavenumber  

 
2

2 2
z2v

k kω
⊥ ≡ −     (2.1.7) 

That as we shall shortly see, has a special physical meaning.    
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This allows us to write the last two expressions in the following 
form  

 z
2 2= ,x x z y z
jk jE E H

k k
ωµ

⊥ ⊥

−
∂ − ∂  (2.1.8) 

 z
2 2= .y x z y z

j jkH E H
k k
ωε

⊥ ⊥

−
∂ − ∂  (2.1.9) 

 In a similar way, we use equations  (i) and  (v) and obtain  

 z
2 2=y y z x z
jk jE E H

k k
ωµ

⊥ ⊥

−
∂ + ∂     (2.1.10) 

 z
2 2= .x y z x z

j jkH E H
k k
ωε

⊥ ⊥

∂ − ∂     (2.1.11) 

 Equations (2.1.8),(2.1.10) and (2.1.9),(2.1.11) can be written in a vector form  

 z
2 2= 1z z z

jk jE E H
k k

ωµ
⊥ ⊥ ⊥

⊥ ⊥

− ∇ + ×∇


    (2.1.12) 

 z
2 2= 1 .z z z

jk jH H E
k k

ωε
⊥ ⊥ ⊥

⊥ ⊥

− ∇ − ×∇


    (2.1.13) 
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Comments:   

1. The wave equations for zE  and zH  with the corresponding boundary conditions and 
the relations in ((2.1.12)--(2.1.13)) determine the electromagnetic field in the entire 
space (at any time).  

 
2. Note that the only assumption made so far was that in the z  direction the 

propagation is according to ( )zexp jk z− . No boundary conditions have been 
imposed so far.  

 
3. Therefore it is important to note within the framework of the present notation that 

TEM mode ( = 0, = 0)z zH E  is possible, provided that 0k⊥ ≡  or substituting in the 
wave equations  
 2 2= 0; = 0.E H⊥ ⊥ ⊥ ⊥∇ ∇

 

    (2.1.14) 
    4. By the superposition principle and the structure of ((2.1.12)--(2.1.13)), the  
        transverse field components may be derived from the longitudinal ones. 

 
Complete Solution = ( = 0) and( = 0) ( = 0) and ( = 0)

Transverse Electric(TE) Transverse Magnetic(TM)
z z z zE H E H/ /+

 

.  



 79 

  
2.2  Transverse Magnetic (TM) Mode [ = 0zH ] 

 
In this section our attention will be focused on a specific case where = 0zH . This 

step is justified by the fact that equations ((2.1.12)--(2.1.13)) are linear, therefore by 
virtue of the superposition principle (e.g. circuit theory) and regarding zH  and zE  as 
sources of the transverse field, we may turn off one and solve for the other and vice 
versa. As indicated in the last comment of the previous section, the overall solution is, 
obviously the superposition of the two. The boundary conditions impose that the 
longitudinal electric field zE  vanishes on the metallic wall therefore  

 , ,

,
= sin sin .z n m

z nm
n m

jk zmx nyE A e
a b

π π −   
   
   

∑     (2.2.1) 

 This further implies that the transverse wave vector, k⊥ , is entirely determined by the 
geometry of the waveguide (substitute in (2.1.3))  

 
2 2 2

2 2
z2= = .

v
m nk k
a b
π π ω

⊥
   + −   
   

    (2.2.2) 

 From these two equations we obtain  
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2 22 2
2 2

z, , 2 2

2 22

z 2

= =
v v

= .
v

n m
m nk k
a b

m nk
a b

ω ω π π

ω π π

⊥
   − − −   
   

   ± − −   
   

 (2.2.3) 

  
This expression represents the  dispersion equation of the electromagnetic wave in the 
waveguide. 

 
Exercise 2.1: Analyze the effect of the material characteristics on the cut-off frequency. 
 
Exercise 2.2: What is the impact of the geometry? 
 
Exercise 2.3: Can two different modes have the same cut-off frequency?  
What is the general condition for such a degeneracy to occur?  
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Comments:   
a) Asymptotically ( vkω ⊥ ) this dispersion relation behaves as if 

no walls were present i.e. zvkω  .  
 

 
b) There is an angular frequency c, ,n mω  for which the wavenumber zk  vanishes. This is 

called the  cutoff frequency.  

( )
2 2 2 2

, , ,

1v = v = v ,
2m n mcc n

m n m nk
a b

f
a b

π πω ⊥
       ≡ + ⇒ +       
       

  (2.2.4) 

               where v = / r rc ε µ . 
 

c) Below this frequency the wavenumber zk  is imaginary and the wave decays or grows 
exponentially in space. 

 
d) The indices n  and m define the mode ,m nTM ; m 

represents the wide transverse dimension ( x ) whereas n  
represents the narrow transverse dimension ( y ).  
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2.3  Transverse Electric (TE) Mode [ = 0zE ] 

 
The second possible solution according to (2.1.12)--(2.1.13) is when = 0zE  and 

since the derivative of the longitudinal magnetic field zH  vanishes on the walls (see 
(2.1.12)) we conclude that  

 , ,
,

,
= cos cos .z n m

z m n
m n

jk zmx nyH A e
a b

π π −   
   
   

∑     (2.3.1) 

 The expression for the transverse wavenumber k⊥  is identical to the TM case and so is 
the dispersion relation. However, note that contrary to the TM mode where if n  or m 
were zero the field component vanishes, in this case we may allow = 0n  or = 0m  
without forcing a trivial solution. 
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For convenience, we present next a comparison table of the 
various field components of the two modes. 
 TM mode TE mode  

 z= sin sin zmn
z mnmn

mx ny jkE A e
a b

π π −   
   
   

∑   = cos cos zmn
z mnmn

mx ny jkH B e
a b

π π −   
   
   

∑  

2= sin cosx mnmn

j n mx nyH A
k b a b
ωε π π π

⊥

     
     
     

∑   2= cos sinx mnmn

j n mx nyE B
k b a b
ωµ π π π

⊥

     
     
     

∑  

2= cos siny nmmn

j m mx nyH A
k a a b
ωε π π π

⊥

−      
     
     

∑   2= sin cosy mnmn

j m mx nyE B
k a a b
ωµ π π π

⊥

     −     
     

∑   

 = 0zH  = 0zE  
 z

2= cos sinx mnmn

jk m mx nyE A
k a a b

π π π

⊥

−      
     
     

∑   z
2= sin cosx mnmn

jk m mx nyH B
k a a b

π π π

⊥

+      
     
     

∑  

 z
2= sin cosy mnmn

jk n mx nyE A
k b a b

π π π

⊥

−      
     
     

∑    z
2= cos siny mnmn

jk n mx nyH B
k b a b

π π π

⊥

+      
     
     

∑   

 
1/22

, ,( ) ( )
, ,= ; 1 c m nTM TM

x mn mn y mn mn

f
E Z H Z

f
µ
ε

  
= −  

   
 

1/ 22
, , ,( )

, ( )= ; 1y mn c m nTE
x mn mnTE

mn

E f
H Z

Z f
µ
ε

−
  

− = −  
   

 

( )
, ,= TM

y mn mn x mnE Z H−  ,
, ( )= x mn

y mn TE
mn

E
H

Z
  

 
Exercise 2.4: Check all the expressions presented in the table above. 
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Comments:   

1. The  phase velocity of the wave is the velocity an imaginary observer has to move 
in order to measure a constant phase i.e. z =t k zω − const.. This implies,  

 
1/22

p 2
z

v = v 1 .c
h

f
k f
ω

−
 

≡ − 
 

    (2.3.2) 

2. The phase velocity is always faster than v!! Specifically, in vacuum the phase 
velocity of a wave is larger than c . In fact close to cutoff this velocity becomes 
"infinite"!! 

3. The  group velocity is defined from the requirement that an observer sees a constant 
envelope in the case of a relatively narrow wave packet. At the continuous limit this 
is determined by  

 
1/22

gr 2
z

v = = v 1 .cf
k f
ω  ∂

− ∂  
    (2.3.3) 

4. The group velocity is alway smaller than v . Specifically, in vacuum it is always 
smaller than c . It is the group velocity is responsible to information transfer. 

5. When the waveguide is uniform  
 2

ph gv v = v .r     (2.3.4) 
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2.4  Power Considerations 
 

2.4.1  Power Flow 
 Let us now consider the power associated with a specific TM mode; say  

 , ,= sin sin .z n m
z mn

jk zmx nyE A e
a b

π π −   
   
   

 

 At this stage, for simplicity sake, we assume that this is the  only  mode in the 
waveguide. Based on Poynting's theorem, the power carried by this mode is given by  

 { }z,0 0
= R .

a b

mn mnP e dx dy S∫ ∫     (2.4.1) 

 Explicitly the longitudinal component of the Poynting vector is  

  

* * *
, , ,

2 2( ) ( )

,

1 1= ( ) 1 = [ ]
2 2
1= .
2

z m n z x y y x m n

TM TM
y x

m n

S E H E H E H

Z H Z H

× ⋅ −

 +  

 

  (2.4.2) 

Above cutoff the characteristic impedance is a real number therefore the next step is to 
substitute the explicit expressions for the magnetic field components and perform the 
spatial integration:  
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2 2( )

0 0

2 22 2
2( )

4

2

2 2
2( )

2

1=
2

1=
2

1= .
2

2

4

2

a bTM
mn y x

TM
mn

k

TM
mn mn

P Z dx dy H H

m nZ A
k a b

abP Z A
k

a bω ε π π

ω ε

⊥

⊥

⊥

 +  

 
     +   
    


⋅

 

∫ ∫



(2.4.3) 

 The last expression represents the  average power  carried by the specific mode. 
 
Exercise 2.5: What is the power at any particular point in time? 
Exercise 2.6: Since the two sets sin( / )mx aπ  and sin( / )ny bπ  are two orthogonal sets of
functions, the total average power carried by the wave in the forward direction is a 
superposition of the average power carried by each individual mode separately. In other 
words show that 

,
= mnn m

P P∑ . 

Exercise 2.7: Show that below cutoff, the power is  identically zero although the field is 
not zero. 
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Exercise 2.8: Note that the average power is proportional to the 
average magnetic energy per unit length. Calculate this quantity. Compare it with the 
average electric energy per unit length. 
Exercise 2.9: Calculate the energy velocity of a specific mode v = /EM EMP W〈 〉 . Compare 
to the group velocity. What happens if the frequency is below cutoff? 
Exercise 2.10: Repeat the last exercise for a superposition of modes ,n mA . 
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2.4.2  Ohm Loss 
 So far it was assumed that the walls are made of an ideal metal ( )σ → ∞ . If this is 

not the case (σ ) a finite amount of power is absorbed by the wall. In order to calculate 
this absorbed power we firstly realize that the magnetic field is "discontinuous" which is 
compensated by a surface current  

 = .sJ n H×
 

     (2.4.4) 
 This current flows in a very thin layer which is assumed to be on the scale of the  skin-
depth [ = /sJ J δ ] therefore, the dissipated average power per unit length is given by  

 
21 1= ,

2DP dxdy J
δσ ∫



    (2.4.5) 

 or explicitly  

 
2

2 21 1= = = ,
2 2 2

s s
D s s

J RP dl dl J dl Jδ
σ δ δσ∫ ∫ ∫



 

  

    (2.4.6) 

 where 2 / oδ ωµ σ≡ , / 2s oR ωµ σ≡  and the integration is over the circumference of 
the waveguide  
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21= .

2D s sP R dl J∫




 (2.4.7)  

 This is the  average electromagnetic power per unit length which is converted into heat 
(dissipation) due to Ohm loss. Based on Poynting's theorem we may deduce that the 
spatial change in the electromagnetic power is given by  

 D
d P P
dz

= −     (2.4.8) 

 and since in case of a single mode both P  and DP  are proportional to 2| |A ,  
 2 2and∝ ∝DP A P A     (2.4.9) 

 we conclude that the change in the amplitude of the mode is given by  

 
2

2 2 2 2= 2 ( ) = ( = 0) .
d A zA A z A z e

dz
αα −− ⇒     (2.4.10) 

 The coefficient α  represents the exponential decay of the amplitude and based on the 
arguments of above is given by  

 .
2

DP
P

α ≡     (2.4.11) 

 
Let us denote by (0)

zk  the wavenumber in a lossless waveguide. Subject to the 
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assumption of small losses ( (0)
zk α ) we can generalize the 

solution in a waveguide with lossy walls by (0)
z z=k k jα− . 

  
Exercise 2.11: Based on the previous calculation of the power show that this parameter is 
given by  

 ( )
2 3 2 3

TM
, 2 2 2 32

2 1=
1 ( / )

s
m n

c

R m b n a
b m b a n af f

α
η

+
+−

    (2.4.12) 

sR  is the surface resistance. Note that α is very large close to cutoff.   Explain the 
difficulty/contradiction. 

 
2.4.3  Dielectric Loss 

 If the dielectric coefficient of the material is not ideal, in other words, it has an 
imaginary component = ' ''

r jε ε ε− , then the wavenumber is given by  

 (0)
z z (0)

z

1 ,
2

''k k j
c ck
ω ωε−     (2.4.13) 

 where we assumed that (i) the dielectric loss is small and (ii) the system operates remote 
from cutoff conditions [i.e. (0)

z /''k cε ω ]. 
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We can now repeat the entire procedure described in the 
previous subsection for a TE mode. Here are the main steps and 
results ( )0 01 and 2ng g ≠= =  

 

{ }
( )

,
,0 0

22* *
, ( )

= cos cos , = e ,

1 1= = .
2 2

a bz mn
z mn mn z mn

z mn x y y x x yTEmn mnmn

jk zmx nyH B e P R dx dyS
a b

S E H E H E E
Z

π π −   
   
   

 − +  

∫ ∫

(2.4.14) 

  
2 22 2 2 2

2
( ) 4 4

2 2
2

( ) 2

1 1 1 1 1 1=
2 2 2 2 2

1=
8

mn mnTE
mn

mnTE
mn

n mP B a b a b
Z k b k a

ab B
Z k

ω µ π ω µ π

ω µ
⊥ ⊥

⊥

    +    
         (2.4.15) 

  
2 2 2 2 2

(TE)
2 2 2 22

2 1= 1 .
2

1

s c n c
mn

c

R f g fb b m ab n a
b a f a f m b n af

f

α

η

       +  + + −        +           −  
 

 (2.4.16) 

µ0 µr
ε 0 ε r

x

y
z

a

b
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Exercise 2.12: Check equation (2.4.16). In particular check the cases = 0n  or = 0m . 
Repeat all the exercises from the above (TM mode) for the TE mode. Make a comparison 
table where relevant. 
Exercise 2.13: Note that both ( )TEα  and ( )TMα  are large close to cutoff and increase as 
ω  for large frequencies. In between there is a minimum loss for an optimal 

frequency. Calculate it. 
Exercise 2.14: Calculate the loss very close to cutoff. 
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2.5  Mode Comparison 
 

 
  
  

Mode comparison for a rectangular waveguide. 
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2.6  Cylindrical Waveguide 
  

2.6.1  Transverse Magnetic (TM) Mode [ = 0]zH  
 
In this section we shall investigate the propagation of a wave in a cylindrical 

waveguide. The longitudinal component of the electric field satisfies  
 2 2[ ] = 0,zk E⊥ ⊥∇ +     (2.6.1) 

 where 
2

2 2
2=

v zk kω
⊥ −  or explicitly  

 
2 2

2
2 2 2

1 1 = 0.zk E
r r r r ϕ ⊥

 ∂ ∂ ∂
+ + + ∂ ∂ ∂ 

    (2.6.2) 

 The solution of this equation subject to the boundary conditions ( = ) = 0zE r R  reads  
z, ,

, , ,
,

= cos( ) sin( ) ,s n
z n s n n s n s

n s

jk zrE J p e A n B n
R

ϕ ϕ
−   +    

∑     (2.6.3) 

where ( )nJ u  is the n 'th order  Bessel function of the first kind. This function behaves 
similar to a trigonometric function (sin  or cos). It has zeros, denoted by ,s np  i.e.,  

 , ,: ( ) 0.s n n s np J p ≡  
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The first few zeros of the Bessel function are tabulated next.  
  

 s=1  s=2  s=3 
n=0 2.405 5.52 8.654 
n=1 3.832 7.016 10.174 
n=2 5.135 8.417 11.62 

 
Substituting (2.6.3) in (2.6.2) we obtain  

 
22 2

,
2 2 2

1 1 = 0s n
z

p
E

r r r r Rϕ

  ∂ ∂ ∂
+ + +  ∂ ∂ ∂    

    (2.6.4) 

 thus  

 
22
,2

z,

22
,2 2

,2 2 2= .
v

=
v

s n
z

s n
s n

p
k k

p
k

R R
ω ω

⊥

 
≡ − ⇒  −

 
    (2.6.5) 

 Based on this expression the characteristic impedance of the TM mode is given by  

 z, ,( )
,

v
= .s nTM

s n

k
Z η

ω
    (2.6.6) 
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2.6.2  Transverse Electric (TE) Mode [ = 0]zE  
 

In this case the wave equation reads  
 2 2[ ] = 0zk H⊥ ⊥∇ +     (2.6.7) 

 and its solution has the form  
z ,

, , ,
,

= cos( ) sin( ) ,s n
z n s n n s n s

s n

jk zrH J p e A n B n
R

ϕ ϕ
− ′  +    

∑     (2.6.8) 

 where  

 , ,
=

= 0 : ( ) = 0.z
s n n s n

r R

H p J p
r

∂ ′ ′ ′⇒
∂

    (2.6.9) 

 The first few zeros of the derivatives of the Bessel function are   
 s=1  s=2  s=3 

 n=0 3.832 7.016 10.174 
n=1 1.841 5.331 8.536 
n=2 3.054 6.706 9.970 

thus 

 
22

,( )
, z, ,

, ,

= , =
v v

s nTE
s n s n

z s n

p
Z k

k R
ω ωη

′   −      
    (2.6.10) 
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/
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nRk R

njnk r jk zH J p e
rk R

ϕ

ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
⊥

⊥

− ′=  
  

− =  
  

′ − ′= − − 
  

−− ′= −  
 
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  
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⊥
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2.6.3  Power Considerations 
According to Maxwell's Equations for a single mode we have  

 2= , = , = / .z r
z r TM

TM

jk EE E H H E Z
k Zϕ ϕ⊥ ⊥
⊥

− ∇ −


 

Consequently, the average Poynting vector is  

 ( )*1= 1
2z zS E H⊥ ⊥× ⋅

 

 

and the average power flowing in the waveguide  

{ }

{ }

{ }

* * *

. . . .

2
2 22

. . . .

2 2
2 2

2 4. . . .

1 1= Re = Re
2 2

1 | | 1= e = Re
2 2

1 1= Re = Re
2 2

r rc s c sz

r
rc s c s

TM TM TM

z z
z zc s c s

TM TM

P da E H da E H E H

EER da da E E
Z Z Z

k kda E da E
Z k Z k

ϕ ϕ

ϕ
ϕ

⊥ ⊥

⊥ ⊥
⊥ ⊥

    × −     
      + +        

   ∇ ∇  
   

∫ ∫

∫ ∫

∫ ∫

 

.   (2.6.11) 

 In order to further simplify the last expression let us examine the wave equation:  
 ( )2 2 = 0zk E⊥ ⊥∇ +     (2.6.12) 
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 we multiply by the complex conjugate of zE   
 ( )* 2 2 = 0z zE k E⊥ ⊥∇ +     (2.6.13) 

 and integrate over the entire cross section  

 ( )

2* 2 2

2 2* 2

= 0

= 0.

⊥ ⊥

⊥ ⊥ ⊥ ⊥

 ∆ ∇ + 
 ∆ ∇ ∇ − ∇ + 

∫
∫

z z z z

z z z z z

da E E k E

da E E E k E     (2.6.14) 
 The first term in the integrand is zero since  

 * *= = 0z z z zda E E d E E⊥ ⊥ ⊥ ⊥   ∇ ∇ ⋅ ∇   ∫ ∫


  
hence  

 2 22= .z zda E k da E⊥ ⊥∇∫ ∫     (2.6.15) 
 Now back to the propagating power for a superposition of modes starting from the 
expression for a single mode we get 
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( ) { } ( )

2 2
2 2

, 4 2
, ,

, ,
2 ,

0 0

', ' ' ', '
', '

1 1= Re =
2 2

cos( )
1=

2 / v cos( ' )

z z
s n z zTM TM

s n s n

z
n s n n s

R s n

n s n n s
s n

k kP da E da E
k kZ Z

k rA J p n
k R

P d drr
rA J p n

k R

π
ϕ

ϕ
η ω ϕ

⊥
⊥ ⊥

⊥

⊥

∇

  
    

      
    

∫ ∫

∑
∫ ∫

∑

 

The integration over the angle is straight forward 

 
2

, '0

1 = 0
cos( )cos( ' ) 2 , = 1 = 0

2
n n n n

n
d n n g g

n
π
ϕ ϕ ϕ π δ


= 

/
∫  

and after integration over r we get 

  ( )

2 2
2, , 2

, , ,2
, , , ,,

1=2 ( )
22

z s n
n s n n n s s sTM

n s s s ns n

k RP g A J p
kZ

π δ ′
′ ⊥

′  ∑  

where we used  

 
2

2

, , ' , , '0
( )

2
R

n n s n n s n n s s s
r r Rdr r J p J p J p
R R

δ    ′ =        ∫     (2.6.16) 
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 In the case of a single mode we have  

 
2 222 , ,

, , 2 2
,

( )1= Re .
2 v v

n n s n s
s n s n n

n s

J p p
P RA R g R

p R
ω ωπ

η

  ′    −           
  (2.6.17) 

Note that there is power flow only if the wave is above cutoff and as in the rectangular 
case, the the total power is the superposition of the power in each mode separately 
  
Exercise 2.15: Calculate the average energy per unit length stored in the 
electromagnetic field. 
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2.6.4  Ohm Loss 
 Now to the general expression for the losses. Starting from the dissipated power  

 

( )

( )

( )

( )

2
2 2 ,( )

, , bound

2
22 2

2

22
2

2

1 1= = =
2 2 2

1= 2
2

1= 2
2 v

r nsss
D s n z s s TM

ns

n nss
n nsTM

nsns

n nss
n ns

ns

ERP J d R H d R d
Z

J pR k R Rg A R
pRZ

J pR R Rg A R
pR

φ

π

ω π
η

′ 
 
 

′  
  

   

∫ ∫ ∫  

  

  (2.6.18) 

  which finally entails for a single mode  

 ,( ) v1= .
v

ph snTM s
ns

R
R

α
η
 
 
 

    (2.6.19) 

Exercise 2.16: Check Eq. (2.6.19). 

Exercise 2.17: Calculate ( )TE
nsα . 

Exercise 2.18: Calculate the exponential decay due to dielectric loss.  
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Mode comparison for cylindrical waveguide. 
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  Wave Type  TM 01   TM 02   TM11   TE 01  TE11   
  
Field distribution 
in cross-sectional 
plane, at plane of 
maximum 
transverse fields  

  

Distributions
Below Along

T his Plane

Distributions
Below Along

T his Plane

 
   

 
Field distribution 
along guide  

Field components 
present  

, ,z rE E Hϕ  , ,z rE E Hϕ  , , , ,z r rE E E H Hϕ ϕ  , ,z rH H Eϕ  , , , ,z r rH H H E Eϕ ϕ   

 p  or p′   2.405   5.52   3.83  3.83   1.84  
 ( )ck    2.405

α
   5.52

α
  3.83

α
   3.83

α
  1.84

α
  

  ( )cλ    2.61α   1.14α   1.64α   1.64α   3.41α   
 ( )cf    0.383

α µε
  0.877

α µε
  0.609

α µε
  0.609

α µε
   0.293

α µε
  

Attenuation due to 
imperfect 
conductors  

2

1
1 ( / )

s

n c

R
f fα −

  
2

1
1 ( / )

s

n c

R
f fα −

  
2

1
1 ( / )

s

n c

R
f fα −

  
2

2

( / )
1 ( / )

s c

n c

R f f
f fα −

   
2

1
1 ( / )

s

n c

R
f fα −
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2.7  Pulse Propagation 
Let us consider an azimuthally symmetric TM mode described by  

 [ ]0
=1

( , , ) = ( ) exp ( )z s s s
s

rE r z t J p d j t z
R

ω ω ω
∞ ∞

−∞
− Γ∑ ∫       (2.7.1) 

wherein 2 2 2 2 2= / /s sp R cωΓ −  and ( )s ω  is the Fourier transform of this field component 
at = 0z   

( )02 0
2

1

1 1( ) = exp ( , = 0, ).
2( )

2

R

s s z

s

rdr r J p dt j t E r z t
R RJ p

ω ω
π

∞

−∞

 ′ ′ ′ ′ ′ ′− 
 ∫ ∫  (2.7.2) 

 Let us now calculate the energy associated with the radiation field as it propagates in 
an empty waveguide. The transverse field components are  

 

( )

( )

1 2
2=1

2

1 22
2=1 0

2

( , , ) = exp

1( , , ) = exp

s s s
r s s

s
s

s s
s s

s
s

prE r z t J p d j t z
R R

c
pr jH r z t J p d j t z

R R c
c

ϕ

ω ω
ω

ωω ω
ωµ

∞ ∞

−∞

∞ ∞

−∞

Γ  − Γ 
  Γ +

  − Γ 
  Γ +

∑ ∫

∑ ∫



  (2.7.3) 

 therefore, the z -component of the Poynting vector is  
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( )

( )

1
=1

1
=1 0

( , , ) = exp ( )

1exp ( ) ( ) .

z s s s s
s s

r RS r z t J p d j t z
R p

r RJ p d j t z j
R cpσ σ σ

σ σ

ω ω ω

η

∞ ∞

−∞

∞ ∞

−∞

     − Γ Γ   
    

    × Ω Ω −Γ Ω Ω Ω   
    

∑ ∫

∑ ∫



  (2.7.4) 

 Using the orthogonality of Bessel functions  

 
2

2
1 1 10

= ( )
2

R

s s s
r r RdrrJ p J p J p
R Rσ σδ   

   
   ∫     (2.7.5) 

 the power propagating is  

 

( )

( )

2
2

1
=1

0

( , ) = 2 ( ) exp ( )
2

1exp ( )

s s s s
s s

s s
s

R RP z t J p d j t z
p

Rd j t z j
cp

π ω ω ω

η

∞ ∞

−∞

∞

−∞

   −Γ Γ  
   

   × Ω Ω −Γ Ω Ω  
   

∑ ∫

∫



   (2.7.6) 

 and the energy associated with this power  
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( ) ( )

( ) [ ]

2
2

1
=1

0

( ) = ( , )

= (2 ) ( ) ( )exp ( )exp
2

1 1 exp ( ) .

R

s s s s s
s

s
s s

W z dtP z t

R J p d z d z

R j R dt j t
p c p

π ω ω ω

ω ω
η

∞

−∞

∞

∞

−∞

−Γ Ω Ω −Γ Ω      

   Ω
× Γ +Ω   
   

∫

∑ ∫ ∫

∫

 

 (2.7.7) 

 With the definition of the Dirac delta function 1 ( )( )
2

j tdt e ωδ ω
π

+ΩΩ+ ≡ ∫  we have  

( ) ( ){ }
2

2 2
1

=1
( ) = (2 ) ( ) ( ) ( )exp

2

( ) 1 1 .

R s s s s s
s

s

s o s

RW z J p d z

R j R
p c p

π ω ω ω ω ω

ω ω
η

∞ ∞

−∞
 − − Γ + Γ − 

   Γ
× −   
   

∑ ∫  

 (2.7.8) 

 For proceeding it is important to emphasize two features: since the field components are 
real functions, it is evident that the integrand ought to satisfy *( ) = ( )s sω ω−  . 
Consequently  

 *( ) = ( )s sω ω−      (2.7.9) 
 and  

 *( ) = ( ).s sω ωΓ − Γ     (2.7.10) 
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 This last conclusion implies that if the frequency is below cut-off (| |< / )sp c Rω  then  
 ( ) =| ( ) |s sω ωΓ − Γ     (2.7.11) 

 whereas if | |> /scp Rω   
 ( ) = | ( ) |.s sjω ωΓ − − Γ     (2.7.12) 

 With these observations we conclude that  
( )2 2 /2 2

1 0
=10

2

/

2(2 )( ) = ( )2Re | ( ) |
2

| ( ) | | ( ) || ( ) | .

cp R ss
R s s

s

s s
scp Rss s s s

zRW z J p d e

R Rj R Rd
cp p cp p

ωπ ω ω
η

ω ωω ωω ω

∞

∞

 − Γ



   Γ Γ− × +    
   

∑ ∫

∫





  (2.7.13) 

Clearly the first integrand is pure imaginary therefore, its contribution is identically 
zero and as a result, in the lossless case considered here, the energy associated with the 
propagating signal does not change as a function of the location  

2 2
2 2
1 /

=10

| ( ) |(2 )= ( ) 2 | ( ) | .
2

s
s scp Rss s s

RR RW J p d
cp p

ωπ ωω ω
η

∞ ∞  Γ
 
 

∑ ∫      (2.7.14) 
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Comments:   
1. Only the propagating components contribute to the radiated energy.  
2. The non-propagating components are confined to the close vicinity of the input 

(where initial conditions were defined).  
3. If all the spectrum is confined to the region 10 < < /p c Rω , no energy will 

propagate.  
4. Since the waveguide is lossless, the propagating energy does not change as a 

function of z .  
 

Exercise 2.19: Calculate the electromagnetic energy per unit length. Compare with 
(2.7.14). 

  
Let us now simplify the discussion and focus on a source which excites only the first 
mode ( = 1)s  i.e., 0 1 0( , = 0, ) = ( / ) ( )zE r z t J p r R E t  therefore according to Eq.(2.7.2) we get 

0 0 1 02 0
2

1

,1
0

1 1( ) = ( ')
2( )

2

= ( ')
2

R

s s

s

s

r r j tdr r J p J p dt e E t
R R RJ p

j tdt e E t

ωω
π

δ ω
π

∞

−∞

∞

−∞

  ′    −′ ′ ′        

′−′

∫ ∫

∫



  (2.7.15) 
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As an example,  consider a signal starting from t=0 ramping up and oscillating 
and decaying  

 ( ) ( ) ( )
2

,1
0 0 0 2 2 2
( ) sin exp ( ) =

2 1 2
s

s
t TE t E t h t E
T j T T

δ
ω

π ω ω
Ω = Ω − ⇒  + + Ω − 

 (2.7.16) 

Substituting in Eq.(2.7.14)  

( )( )
( ) ( )1

2 4 2 22
12 4 1 1

0 22 2/ 2 2 210 1

1 ( )=
1 2cp R

TJ pW E R d
c p T Tω

ω ω ω
ω

η ω ω

∞

=

Ω − 
 

   + Ω − + 
∫   (2.7.17) 

 Normalizing to the cutoff frequency, 1/u ω ω=  as well as 1 1/ , T Tω ωΩ =Ω =  the last 
integral simplifies to read 

 
2 2

2 3 21 1
0 0 21 2 2 2 2 2

1

( ) 1=
4

J p u uW E R du
p T u u T

ε
∞

− −

−
Ω

 +Ω − + 
∫     (2.7.18) 

 Its  numerical analysis reveals that  

 
2

2 3 21 1
0 0

1

1 1( )
4 1

J pW E R
p T

πε
 Ω <

Ω 
Ω >

  (2.7.19) 

Exercise 2.20: Compare with the dependence of the propagating energy in the frequency 
Ω  when the signal prescribed by Eq.(2.7.16) propagates in free space. 


